Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver ToolsFeatured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver Tools

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
Prompts
Vercel AI SDK Patterns

Vercel AI SDK Patterns

Build AI applications with Vercel AI SDK for Google Antigravity IDE

AIVercelLLMFull Stack
by Antigravity AI
⭐0Stars
.antigravity
# Vercel AI SDK Patterns for Google Antigravity

Master AI application development with the Vercel AI SDK in Google Antigravity IDE. This comprehensive guide covers streaming responses, tool calling, structured outputs, multi-modal inputs, and provider-agnostic patterns for building intelligent applications.

## Configuration

Configure your Antigravity environment for AI SDK:

```typescript
// .antigravity/ai-sdk.ts
export const aiConfig = {
  providers: ["openai", "anthropic", "google"],
  streaming: true,
  features: {
    toolCalling: true,
    structuredOutput: true,
    multiModal: true
  }
};
```

## Basic Chat Implementation

Create streaming chat interfaces:

```typescript
// app/api/chat/route.ts
import { openai } from "@ai-sdk/openai";
import { streamText } from "ai";

export async function POST(request: Request) {
  const { messages } = await request.json();

  const result = await streamText({
    model: openai("gpt-4-turbo"),
    system: "You are a helpful assistant.",
    messages,
    maxTokens: 1000,
    temperature: 0.7
  });

  return result.toDataStreamResponse();
}

// components/Chat.tsx
"use client";

import { useChat } from "ai/react";

export function Chat() {
  const { messages, input, handleInputChange, handleSubmit, isLoading } = useChat({
    api: "/api/chat"
  });

  return (
    <div className="chat-container">
      <div className="messages">
        {messages.map((m) => (
          <div key={m.id} className={`message ${m.role}`}>
            {m.content}
          </div>
        ))}
      </div>
      
      <form onSubmit={handleSubmit}>
        <input
          value={input}
          onChange={handleInputChange}
          placeholder="Type a message..."
          disabled={isLoading}
        />
        <button type="submit" disabled={isLoading}>
          Send
        </button>
      </form>
    </div>
  );
}
```

## Tool Calling Pattern

Implement AI tools for function calling:

```typescript
import { openai } from "@ai-sdk/openai";
import { streamText, tool } from "ai";
import { z } from "zod";

const weatherTool = tool({
  description: "Get the current weather for a location",
  parameters: z.object({
    location: z.string().describe("The city and state"),
    unit: z.enum(["celsius", "fahrenheit"]).default("celsius")
  }),
  execute: async ({ location, unit }) => {
    const weather = await fetchWeather(location);
    return {
      temperature: unit === "celsius" ? weather.tempC : weather.tempF,
      condition: weather.condition,
      humidity: weather.humidity
    };
  }
});

const searchTool = tool({
  description: "Search the web for information",
  parameters: z.object({
    query: z.string().describe("The search query")
  }),
  execute: async ({ query }) => {
    const results = await searchWeb(query);
    return results.slice(0, 5);
  }
});

export async function POST(request: Request) {
  const { messages } = await request.json();

  const result = await streamText({
    model: openai("gpt-4-turbo"),
    messages,
    tools: {
      weather: weatherTool,
      search: searchTool
    },
    maxSteps: 5
  });

  return result.toDataStreamResponse();
}
```

## Structured Output

Generate type-safe structured data:

```typescript
import { openai } from "@ai-sdk/openai";
import { generateObject } from "ai";
import { z } from "zod";

const recipeSchema = z.object({
  name: z.string(),
  description: z.string(),
  prepTime: z.number().describe("Preparation time in minutes"),
  cookTime: z.number().describe("Cooking time in minutes"),
  servings: z.number(),
  ingredients: z.array(z.object({
    item: z.string(),
    amount: z.string(),
    unit: z.string().optional()
  })),
  instructions: z.array(z.string()),
  nutritionInfo: z.object({
    calories: z.number(),
    protein: z.number(),
    carbs: z.number(),
    fat: z.number()
  }).optional()
});

export async function POST(request: Request) {
  const { prompt } = await request.json();

  const { object } = await generateObject({
    model: openai("gpt-4-turbo"),
    schema: recipeSchema,
    prompt: `Create a detailed recipe for: ${prompt}`
  });

  return Response.json(object);
}
```

## Multi-Modal Input

Handle images and text together:

```typescript
import { openai } from "@ai-sdk/openai";
import { generateText } from "ai";

export async function POST(request: Request) {
  const formData = await request.formData();
  const image = formData.get("image") as File;
  const prompt = formData.get("prompt") as string;

  const imageBuffer = await image.arrayBuffer();
  const base64Image = Buffer.from(imageBuffer).toString("base64");

  const { text } = await generateText({
    model: openai("gpt-4-vision-preview"),
    messages: [
      {
        role: "user",
        content: [
          { type: "text", text: prompt },
          {
            type: "image",
            image: `data:${image.type};base64,${base64Image}`
          }
        ]
      }
    ]
  });

  return Response.json({ analysis: text });
}
```

## Provider Switching

Support multiple AI providers:

```typescript
import { openai } from "@ai-sdk/openai";
import { anthropic } from "@ai-sdk/anthropic";
import { google } from "@ai-sdk/google";
import { streamText } from "ai";

const providers = {
  openai: openai("gpt-4-turbo"),
  anthropic: anthropic("claude-3-sonnet-20240229"),
  google: google("gemini-pro")
};

export async function POST(request: Request) {
  const { messages, provider = "openai" } = await request.json();

  const model = providers[provider as keyof typeof providers];

  const result = await streamText({
    model,
    messages,
    maxTokens: 1000
  });

  return result.toDataStreamResponse();
}
```

## Best Practices

Follow these guidelines for AI SDK development:

1. **Stream responses** - Better user experience
2. **Use structured output** - Type-safe AI responses
3. **Implement tools** - Extend AI capabilities
4. **Handle errors** - Graceful degradation
5. **Rate limit** - Protect API costs
6. **Cache responses** - Reduce redundant calls

Google Antigravity IDE provides intelligent AI SDK suggestions and streaming pattern assistance.

When to Use This Prompt

This AI prompt is ideal for developers working on:

  • AI applications requiring modern best practices and optimal performance
  • Projects that need production-ready AI code with proper error handling
  • Teams looking to standardize their ai development workflow
  • Developers wanting to learn industry-standard AI patterns and techniques

By using this prompt, you can save hours of manual coding and ensure best practices are followed from the start. It's particularly valuable for teams looking to maintain consistency across their ai implementations.

How to Use

  1. Copy the prompt - Click the copy button above to copy the entire prompt to your clipboard
  2. Paste into your AI assistant - Use with Claude, ChatGPT, Cursor, or any AI coding tool
  3. Customize as needed - Adjust the prompt based on your specific requirements
  4. Review the output - Always review generated code for security and correctness
💡 Pro Tip: For best results, provide context about your project structure and any specific constraints or preferences you have.

Best Practices

  • ✓ Always review generated code for security vulnerabilities before deploying
  • ✓ Test the AI code in a development environment first
  • ✓ Customize the prompt output to match your project's coding standards
  • ✓ Keep your AI assistant's context window in mind for complex requirements
  • ✓ Version control your prompts alongside your code for reproducibility

Frequently Asked Questions

Can I use this AI prompt commercially?

Yes! All prompts on Antigravity AI Directory are free to use for both personal and commercial projects. No attribution required, though it's always appreciated.

Which AI assistants work best with this prompt?

This prompt works excellently with Claude, ChatGPT, Cursor, GitHub Copilot, and other modern AI coding assistants. For best results, use models with large context windows.

How do I customize this prompt for my specific needs?

You can modify the prompt by adding specific requirements, constraints, or preferences. For AI projects, consider mentioning your framework version, coding style, and any specific libraries you're using.

Related Prompts

💬 Comments

Loading comments...