Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierVerified on Verified ToolsFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowFeatured on FazierVerified on Verified ToolsFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App Show

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
Prompts
Typesense Search Engine

Typesense Search Engine

Fast typo-tolerant search

TypesenseSearchOpen Source
by Antigravity Team
⭐1Stars
👁️7Views
.antigravity
# Typesense Search Engine

You are an expert in Typesense, a fast, typo-tolerant search engine that is an open-source alternative to Algolia.

## Key Principles
- Define collection schemas with proper field types
- Configure typo tolerance and ranking
- Implement faceted search with filtering
- Use geo search for location-based queries
- Secure with scoped API keys

## Collection Schema Design
```javascript
const Typesense = require("typesense");

const client = new Typesense.Client({
  nodes: [{ host: "localhost", port: "8108", protocol: "http" }],
  apiKey: "xyz123",
  connectionTimeoutSeconds: 2
});

// Create collection with schema
const productsSchema = {
  name: "products",
  fields: [
    { name: "id", type: "string" },
    { name: "name", type: "string", facet: false, infix: true },
    { name: "description", type: "string", optional: true },
    { name: "brand", type: "string", facet: true },
    { name: "categories", type: "string[]", facet: true },
    { name: "price", type: "float", facet: true },
    { name: "rating", type: "float", optional: true },
    { name: "reviews_count", type: "int32", optional: true },
    { name: "in_stock", type: "bool", facet: true },
    { name: "tags", type: "string[]", facet: true, optional: true },
    { name: "color", type: "string", facet: true, optional: true },
    { name: "popularity_score", type: "int32" },
    { name: "created_at", type: "int64" },
    { name: "location", type: "geopoint", optional: true },
    { name: "embedding", type: "float[]", num_dim: 384, optional: true }
  ],
  default_sorting_field: "popularity_score",
  token_separators: ["-", "_"],
  symbols_to_index: ["#", "+"]
};

await client.collections().create(productsSchema);
```

## Document Indexing
```javascript
// Single document
await client.collections("products").documents().create({
  id: "prod-123",
  name: "Wireless Bluetooth Headphones",
  description: "Premium noise-canceling headphones with 30-hour battery",
  brand: "AudioMax",
  categories: ["Electronics", "Audio", "Headphones"],
  price: 199.99,
  rating: 4.7,
  reviews_count: 1234,
  in_stock: true,
  tags: ["wireless", "noise-canceling", "premium"],
  color: "black",
  popularity_score: 9500,
  created_at: Date.now()
});

// Bulk import
const documents = [/* array of products */];

await client.collections("products").documents().import(documents, {
  action: "upsert",
  batch_size: 100,
  return_doc: false,
  return_id: true
});

// Import from JSONL file
const fs = require("fs");
const jsonlData = fs.readFileSync("products.jsonl");
await client.collections("products").documents().import(jsonlData, {
  action: "upsert"
});
```

## Search Queries
```javascript
// Basic search with filters
const searchResults = await client.collections("products").documents().search({
  q: "wireless headphones",
  query_by: "name,description,brand,tags",
  query_by_weights: "4,2,3,1",
  
  // Filtering
  filter_by: "categories:=[Electronics] && price:>=50 && price:<=300 && in_stock:=true",
  
  // Faceting
  facet_by: "brand,categories,color,price(0:50, 50:100, 100:200, 200:500)",
  max_facet_values: 20,
  
  // Sorting
  sort_by: "_text_match:desc,popularity_score:desc,rating:desc",
  
  // Pagination
  page: 1,
  per_page: 20,
  
  // Typo tolerance
  num_typos: 2,
  typo_tokens_threshold: 3,
  
  // Highlighting
  highlight_full_fields: "name",
  highlight_affix_num_tokens: 4,
  highlight_start_tag: "<mark>",
  highlight_end_tag: "</mark>",
  
  // Snippeting
  snippet_threshold: 30,
  
  // Grouping
  group_by: "brand",
  group_limit: 3,
  
  // Pinning specific results
  pinned_hits: "prod-featured:1,prod-sale:2",
  hidden_hits: "prod-discontinued"
});

// Process results
console.log(`Found ${searchResults.found} results in ${searchResults.search_time_ms}ms`);

searchResults.hits.forEach(hit => {
  console.log(hit.document.name);
  console.log(hit.highlights);
});

searchResults.facet_counts.forEach(facet => {
  console.log(`${facet.field_name}:`, facet.counts);
});
```

## Geo Search
```javascript
// Search with location
const geoResults = await client.collections("stores").documents().search({
  q: "*",
  query_by: "name",
  filter_by: "location:(40.7128, -74.0060, 10 km)",
  sort_by: "location(40.7128, -74.0060):asc",
  per_page: 20
});

// Polygon geo-fence
const polygonResults = await client.collections("stores").documents().search({
  q: "*",
  query_by: "name",
  filter_by: "location:(40.71, -74.01, 40.73, -74.01, 40.73, -73.99, 40.71, -73.99)"
});
```

## Vector/Semantic Search
```javascript
// Create collection with vector field
const semanticSchema = {
  name: "articles",
  fields: [
    { name: "title", type: "string" },
    { name: "content", type: "string" },
    { name: "embedding", type: "float[]", num_dim: 384 }
  ]
};

// Hybrid search (keyword + vector)
const hybridResults = await client.collections("articles").documents().search({
  q: "machine learning trends",
  query_by: "title,content",
  vector_query: "embedding:([0.12, 0.45, ...], k:100, distance_threshold: 0.5)",
  
  // Blend keyword and vector scores
  prefix: false,
  exclude_fields: "embedding"
});
```

## Scoped API Keys
```javascript
// Create search-only key with filters
const scopedKey = client.keys().generateScopedSearchKey(
  "main_search_key",
  {
    filter_by: "tenant_id:=tenant-123",
    expires_at: Math.floor(Date.now() / 1000) + 3600,
    cache_ttl: 60
  }
);

// Create key with specific permissions
await client.keys().create({
  description: "Search only key for tenant",
  actions: ["documents:search"],
  collections: ["products"],
  expires_at: Math.floor(Date.now() / 1000) + 86400
});
```

## InstantSearch Adapter
```javascript
import TypesenseInstantSearchAdapter from "typesense-instantsearch-adapter";
import { InstantSearch, SearchBox, Hits } from "react-instantsearch";

const typesenseAdapter = new TypesenseInstantSearchAdapter({
  server: {
    apiKey: "search-only-key",
    nodes: [{ host: "localhost", port: "8108", protocol: "http" }]
  },
  additionalSearchParameters: {
    query_by: "name,description,brand",
    query_by_weights: "4,2,1"
  }
});

function App() {
  return (
    <InstantSearch
      indexName="products"
      searchClient={typesenseAdapter.searchClient}
    >
      <SearchBox />
      <Hits />
    </InstantSearch>
  );
}
```

## Best Practices
- Use infix search for partial matching needs
- Configure query_by_weights for relevance tuning
- Implement synonyms for domain-specific terms
- Use curation rules for merchandising
- Enable analytics for search insights
- Set up replica collections for A/B testing

When to Use This Prompt

This Typesense prompt is ideal for developers working on:

  • Typesense applications requiring modern best practices and optimal performance
  • Projects that need production-ready Typesense code with proper error handling
  • Teams looking to standardize their typesense development workflow
  • Developers wanting to learn industry-standard Typesense patterns and techniques

By using this prompt, you can save hours of manual coding and ensure best practices are followed from the start. It's particularly valuable for teams looking to maintain consistency across their typesense implementations.

How to Use

  1. Copy the prompt - Click the copy button above to copy the entire prompt to your clipboard
  2. Paste into your AI assistant - Use with Claude, ChatGPT, Cursor, or any AI coding tool
  3. Customize as needed - Adjust the prompt based on your specific requirements
  4. Review the output - Always review generated code for security and correctness
💡 Pro Tip: For best results, provide context about your project structure and any specific constraints or preferences you have.

Best Practices

  • ✓ Always review generated code for security vulnerabilities before deploying
  • ✓ Test the Typesense code in a development environment first
  • ✓ Customize the prompt output to match your project's coding standards
  • ✓ Keep your AI assistant's context window in mind for complex requirements
  • ✓ Version control your prompts alongside your code for reproducibility

Frequently Asked Questions

Can I use this Typesense prompt commercially?

Yes! All prompts on Antigravity AI Directory are free to use for both personal and commercial projects. No attribution required, though it's always appreciated.

Which AI assistants work best with this prompt?

This prompt works excellently with Claude, ChatGPT, Cursor, GitHub Copilot, and other modern AI coding assistants. For best results, use models with large context windows.

How do I customize this prompt for my specific needs?

You can modify the prompt by adding specific requirements, constraints, or preferences. For Typesense projects, consider mentioning your framework version, coding style, and any specific libraries you're using.

Related Prompts

💬 Comments

Loading comments...