Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver ToolsFeatured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver Tools

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
Prompts
Observability Complete Guide

Observability Complete Guide

Implement comprehensive logging and monitoring for production applications

loggingmonitoringobservabilityopentelemetry
by antigravity-team
⭐0Stars
.antigravity
# Observability Complete Guide for Google Antigravity

Build observable applications with structured logging and comprehensive monitoring using Google Antigravity IDE.

## Structured Logging Setup

```typescript
// lib/logger.ts
import pino from "pino";
import { AsyncLocalStorage } from "async_hooks";

// Request context storage
const requestContext = new AsyncLocalStorage<{
  requestId: string;
  userId?: string;
  path?: string;
}>();

const logger = pino({
  level: process.env.LOG_LEVEL || "info",
  formatters: {
    level: (label) => ({ level: label }),
    bindings: () => ({})
  },
  timestamp: pino.stdTimeFunctions.isoTime,
  mixin() {
    const context = requestContext.getStore();
    return context ? { ...context } : {};
  },
  redact: {
    paths: ["password", "token", "authorization", "cookie"],
    censor: "[REDACTED]"
  }
});

export { logger, requestContext };

// Middleware for request context
export function withRequestContext(handler: Function) {
  return async (req: Request, ...args: unknown[]) => {
    const requestId = req.headers.get("x-request-id") || crypto.randomUUID();
    const userId = req.headers.get("x-user-id") || undefined;
    
    return requestContext.run({ requestId, userId, path: new URL(req.url).pathname }, () =>
      handler(req, ...args)
    );
  };
}

// Usage example
export function logError(error: Error, context?: Record<string, unknown>) {
  logger.error({
    err: {
      name: error.name,
      message: error.message,
      stack: error.stack
    },
    ...context
  }, error.message);
}

export function logInfo(message: string, data?: Record<string, unknown>) {
  logger.info(data, message);
}

export function logWarning(message: string, data?: Record<string, unknown>) {
  logger.warn(data, message);
}
```

## OpenTelemetry Integration

```typescript
// lib/tracing.ts
import { NodeSDK } from "@opentelemetry/sdk-node";
import { getNodeAutoInstrumentations } from "@opentelemetry/auto-instrumentations-node";
import { OTLPTraceExporter } from "@opentelemetry/exporter-trace-otlp-http";
import { OTLPMetricExporter } from "@opentelemetry/exporter-metrics-otlp-http";
import { PeriodicExportingMetricReader } from "@opentelemetry/sdk-metrics";
import { Resource } from "@opentelemetry/resources";
import { SemanticResourceAttributes } from "@opentelemetry/semantic-conventions";

const sdk = new NodeSDK({
  resource: new Resource({
    [SemanticResourceAttributes.SERVICE_NAME]: process.env.SERVICE_NAME || "my-app",
    [SemanticResourceAttributes.SERVICE_VERSION]: process.env.APP_VERSION || "1.0.0",
    [SemanticResourceAttributes.DEPLOYMENT_ENVIRONMENT]: process.env.NODE_ENV || "development"
  }),
  traceExporter: new OTLPTraceExporter({
    url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT + "/v1/traces"
  }),
  metricReader: new PeriodicExportingMetricReader({
    exporter: new OTLPMetricExporter({
      url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT + "/v1/metrics"
    }),
    exportIntervalMillis: 30000
  }),
  instrumentations: [
    getNodeAutoInstrumentations({
      "@opentelemetry/instrumentation-fs": { enabled: false }
    })
  ]
});

sdk.start();

process.on("SIGTERM", () => {
  sdk.shutdown()
    .then(() => console.log("Tracing terminated"))
    .catch((error) => console.error("Error terminating tracing", error))
    .finally(() => process.exit(0));
});
```

## Custom Metrics

```typescript
// lib/metrics.ts
import { metrics, Counter, Histogram, UpDownCounter } from "@opentelemetry/api";

const meter = metrics.getMeter("my-app");

// HTTP request metrics
export const httpRequestDuration = meter.createHistogram("http_request_duration_ms", {
  description: "HTTP request duration in milliseconds",
  unit: "ms"
});

export const httpRequestTotal = meter.createCounter("http_requests_total", {
  description: "Total number of HTTP requests"
});

export const httpRequestErrors = meter.createCounter("http_request_errors_total", {
  description: "Total number of HTTP request errors"
});

// Business metrics
export const activeUsers = meter.createUpDownCounter("active_users", {
  description: "Number of currently active users"
});

export const ordersProcessed = meter.createCounter("orders_processed_total", {
  description: "Total number of orders processed"
});
```

## Best Practices

1. **Use structured logging** with consistent fields
2. **Include request context** in all logs
3. **Redact sensitive information** automatically
4. **Implement distributed tracing** across services
5. **Create custom business metrics**
6. **Set up alerts** for critical thresholds
7. **Use log aggregation** for centralized analysis

Google Antigravity helps implement observability patterns and suggests monitoring configurations.

When to Use This Prompt

This logging prompt is ideal for developers working on:

  • logging applications requiring modern best practices and optimal performance
  • Projects that need production-ready logging code with proper error handling
  • Teams looking to standardize their logging development workflow
  • Developers wanting to learn industry-standard logging patterns and techniques

By using this prompt, you can save hours of manual coding and ensure best practices are followed from the start. It's particularly valuable for teams looking to maintain consistency across their logging implementations.

How to Use

  1. Copy the prompt - Click the copy button above to copy the entire prompt to your clipboard
  2. Paste into your AI assistant - Use with Claude, ChatGPT, Cursor, or any AI coding tool
  3. Customize as needed - Adjust the prompt based on your specific requirements
  4. Review the output - Always review generated code for security and correctness
💡 Pro Tip: For best results, provide context about your project structure and any specific constraints or preferences you have.

Best Practices

  • ✓ Always review generated code for security vulnerabilities before deploying
  • ✓ Test the logging code in a development environment first
  • ✓ Customize the prompt output to match your project's coding standards
  • ✓ Keep your AI assistant's context window in mind for complex requirements
  • ✓ Version control your prompts alongside your code for reproducibility

Frequently Asked Questions

Can I use this logging prompt commercially?

Yes! All prompts on Antigravity AI Directory are free to use for both personal and commercial projects. No attribution required, though it's always appreciated.

Which AI assistants work best with this prompt?

This prompt works excellently with Claude, ChatGPT, Cursor, GitHub Copilot, and other modern AI coding assistants. For best results, use models with large context windows.

How do I customize this prompt for my specific needs?

You can modify the prompt by adding specific requirements, constraints, or preferences. For logging projects, consider mentioning your framework version, coding style, and any specific libraries you're using.

Related Prompts

💬 Comments

Loading comments...