Implement comprehensive logging and monitoring for production applications
# Observability Complete Guide for Google Antigravity
Build observable applications with structured logging and comprehensive monitoring using Google Antigravity IDE.
## Structured Logging Setup
```typescript
// lib/logger.ts
import pino from "pino";
import { AsyncLocalStorage } from "async_hooks";
// Request context storage
const requestContext = new AsyncLocalStorage<{
requestId: string;
userId?: string;
path?: string;
}>();
const logger = pino({
level: process.env.LOG_LEVEL || "info",
formatters: {
level: (label) => ({ level: label }),
bindings: () => ({})
},
timestamp: pino.stdTimeFunctions.isoTime,
mixin() {
const context = requestContext.getStore();
return context ? { ...context } : {};
},
redact: {
paths: ["password", "token", "authorization", "cookie"],
censor: "[REDACTED]"
}
});
export { logger, requestContext };
// Middleware for request context
export function withRequestContext(handler: Function) {
return async (req: Request, ...args: unknown[]) => {
const requestId = req.headers.get("x-request-id") || crypto.randomUUID();
const userId = req.headers.get("x-user-id") || undefined;
return requestContext.run({ requestId, userId, path: new URL(req.url).pathname }, () =>
handler(req, ...args)
);
};
}
// Usage example
export function logError(error: Error, context?: Record<string, unknown>) {
logger.error({
err: {
name: error.name,
message: error.message,
stack: error.stack
},
...context
}, error.message);
}
export function logInfo(message: string, data?: Record<string, unknown>) {
logger.info(data, message);
}
export function logWarning(message: string, data?: Record<string, unknown>) {
logger.warn(data, message);
}
```
## OpenTelemetry Integration
```typescript
// lib/tracing.ts
import { NodeSDK } from "@opentelemetry/sdk-node";
import { getNodeAutoInstrumentations } from "@opentelemetry/auto-instrumentations-node";
import { OTLPTraceExporter } from "@opentelemetry/exporter-trace-otlp-http";
import { OTLPMetricExporter } from "@opentelemetry/exporter-metrics-otlp-http";
import { PeriodicExportingMetricReader } from "@opentelemetry/sdk-metrics";
import { Resource } from "@opentelemetry/resources";
import { SemanticResourceAttributes } from "@opentelemetry/semantic-conventions";
const sdk = new NodeSDK({
resource: new Resource({
[SemanticResourceAttributes.SERVICE_NAME]: process.env.SERVICE_NAME || "my-app",
[SemanticResourceAttributes.SERVICE_VERSION]: process.env.APP_VERSION || "1.0.0",
[SemanticResourceAttributes.DEPLOYMENT_ENVIRONMENT]: process.env.NODE_ENV || "development"
}),
traceExporter: new OTLPTraceExporter({
url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT + "/v1/traces"
}),
metricReader: new PeriodicExportingMetricReader({
exporter: new OTLPMetricExporter({
url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT + "/v1/metrics"
}),
exportIntervalMillis: 30000
}),
instrumentations: [
getNodeAutoInstrumentations({
"@opentelemetry/instrumentation-fs": { enabled: false }
})
]
});
sdk.start();
process.on("SIGTERM", () => {
sdk.shutdown()
.then(() => console.log("Tracing terminated"))
.catch((error) => console.error("Error terminating tracing", error))
.finally(() => process.exit(0));
});
```
## Custom Metrics
```typescript
// lib/metrics.ts
import { metrics, Counter, Histogram, UpDownCounter } from "@opentelemetry/api";
const meter = metrics.getMeter("my-app");
// HTTP request metrics
export const httpRequestDuration = meter.createHistogram("http_request_duration_ms", {
description: "HTTP request duration in milliseconds",
unit: "ms"
});
export const httpRequestTotal = meter.createCounter("http_requests_total", {
description: "Total number of HTTP requests"
});
export const httpRequestErrors = meter.createCounter("http_request_errors_total", {
description: "Total number of HTTP request errors"
});
// Business metrics
export const activeUsers = meter.createUpDownCounter("active_users", {
description: "Number of currently active users"
});
export const ordersProcessed = meter.createCounter("orders_processed_total", {
description: "Total number of orders processed"
});
```
## Best Practices
1. **Use structured logging** with consistent fields
2. **Include request context** in all logs
3. **Redact sensitive information** automatically
4. **Implement distributed tracing** across services
5. **Create custom business metrics**
6. **Set up alerts** for critical thresholds
7. **Use log aggregation** for centralized analysis
Google Antigravity helps implement observability patterns and suggests monitoring configurations.This logging prompt is ideal for developers working on:
By using this prompt, you can save hours of manual coding and ensure best practices are followed from the start. It's particularly valuable for teams looking to maintain consistency across their logging implementations.
Yes! All prompts on Antigravity AI Directory are free to use for both personal and commercial projects. No attribution required, though it's always appreciated.
This prompt works excellently with Claude, ChatGPT, Cursor, GitHub Copilot, and other modern AI coding assistants. For best results, use models with large context windows.
You can modify the prompt by adding specific requirements, constraints, or preferences. For logging projects, consider mentioning your framework version, coding style, and any specific libraries you're using.