Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver ToolsFeatured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver Tools

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
Prompts
Effect-TS Functional Patterns

Effect-TS Functional Patterns

Build robust applications with Effect-TS for type-safe error handling in Google Antigravity

Effect-TSFunctionalTypeScriptError HandlingComposition
by Antigravity Team
⭐0Stars
.antigravity
# Effect-TS Functional Patterns for Google Antigravity

Effect-TS provides powerful abstractions for type-safe, composable code. This guide covers patterns for Google Antigravity IDE and Gemini 3.

## Basic Effect Usage

```typescript
// src/services/userService.ts
import { Effect, pipe, Context, Layer } from 'effect';

// Define errors
class UserNotFoundError {
  readonly _tag = 'UserNotFoundError';
  constructor(readonly userId: string) {}
}

class DatabaseError {
  readonly _tag = 'DatabaseError';
  constructor(readonly cause: unknown) {}
}

// Define service interface
interface UserRepository {
  readonly findById: (id: string) => Effect.Effect<User, UserNotFoundError | DatabaseError>;
  readonly findAll: () => Effect.Effect<User[], DatabaseError>;
  readonly create: (data: CreateUserInput) => Effect.Effect<User, DatabaseError>;
  readonly update: (id: string, data: UpdateUserInput) => Effect.Effect<User, UserNotFoundError | DatabaseError>;
  readonly delete: (id: string) => Effect.Effect<void, UserNotFoundError | DatabaseError>;
}

// Create service tag
const UserRepository = Context.GenericTag<UserRepository>('UserRepository');

// Service implementation
const UserRepositoryLive = Layer.succeed(
  UserRepository,
  UserRepository.of({
    findById: (id) =>
      Effect.tryPromise({
        try: () => db.user.findUnique({ where: { id } }),
        catch: (error) => new DatabaseError(error),
      }).pipe(
        Effect.flatMap((user) =>
          user ? Effect.succeed(user) : Effect.fail(new UserNotFoundError(id))
        )
      ),
    findAll: () =>
      Effect.tryPromise({
        try: () => db.user.findMany(),
        catch: (error) => new DatabaseError(error),
      }),
    create: (data) =>
      Effect.tryPromise({
        try: () => db.user.create({ data }),
        catch: (error) => new DatabaseError(error),
      }),
    update: (id, data) =>
      pipe(
        Effect.tryPromise({
          try: () => db.user.update({ where: { id }, data }),
          catch: (error) => new DatabaseError(error),
        }),
        Effect.catchTag('DatabaseError', (e) => {
          if (isNotFoundError(e.cause)) return Effect.fail(new UserNotFoundError(id));
          return Effect.fail(e);
        })
      ),
    delete: (id) =>
      Effect.tryPromise({
        try: () => db.user.delete({ where: { id } }).then(() => undefined),
        catch: (error) => new DatabaseError(error),
      }),
  })
);
```

## Composing Effects

```typescript
// src/workflows/orderWorkflow.ts
import { Effect, pipe } from 'effect';

const createOrder = (input: OrderInput) =>
  pipe(
    // Validate input
    validateOrderInput(input),
    // Check inventory
    Effect.flatMap((validated) =>
      pipe(
        checkInventory(validated.items),
        Effect.mapError(() => new InsufficientInventoryError())
      )
    ),
    // Process payment
    Effect.flatMap((items) =>
      pipe(
        processPayment(input.paymentMethod, calculateTotal(items)),
        Effect.mapError((e) => new PaymentFailedError(e.message))
      )
    ),
    // Create order record
    Effect.flatMap((paymentResult) =>
      createOrderRecord({
        ...input,
        paymentId: paymentResult.id,
        status: 'confirmed',
      })
    ),
    // Send confirmation email
    Effect.tap((order) =>
      pipe(
        sendOrderConfirmation(order),
        Effect.catchAll(() => Effect.succeed(undefined)) // Email failure is non-critical
      )
    )
  );

// Run the effect
const program = pipe(
  createOrder(orderInput),
  Effect.provide(OrderServiceLive),
  Effect.provide(PaymentServiceLive),
  Effect.provide(EmailServiceLive)
);

Effect.runPromise(program).then(console.log).catch(console.error);
```

## Resource Management

```typescript
// src/resources/database.ts
import { Effect, Scope, pipe } from 'effect';

const acquireConnection = Effect.tryPromise(() => pool.connect());
const releaseConnection = (conn: PoolClient) => Effect.sync(() => conn.release());

const withConnection = <A, E>(
  use: (conn: PoolClient) => Effect.Effect<A, E>
): Effect.Effect<A, E, Scope.Scope> =>
  Effect.acquireRelease(acquireConnection, releaseConnection).pipe(Effect.flatMap(use));

// Usage with automatic cleanup
const getUsersWithConnection = pipe(
  withConnection((conn) =>
    Effect.tryPromise(() => conn.query('SELECT * FROM users'))
  ),
  Effect.scoped // Ensures connection is released
);
```

## Schema Validation

```typescript
// src/schemas/user.ts
import { Schema } from '@effect/schema';

const UserSchema = Schema.Struct({
  id: Schema.UUID,
  email: Schema.String.pipe(Schema.pattern(/^[^s@]+@[^s@]+.[^s@]+$/)),
  name: Schema.String.pipe(Schema.minLength(2), Schema.maxLength(100)),
  role: Schema.Literal('user', 'admin'),
  createdAt: Schema.Date,
});

type User = Schema.Schema.Type<typeof UserSchema>;

const parseUser = Schema.decodeUnknown(UserSchema);

// Usage
const result = parseUser({ id: '...', email: 'user@example.com', name: 'John', role: 'user', createdAt: new Date() });
```

## Best Practices

1. **Tagged Errors**: Use discriminated unions for errors
2. **Service Pattern**: Define services with Context
3. **Layers**: Compose dependencies with Layer
4. **Resource Safety**: Use acquireRelease for cleanup
5. **Pipelines**: Compose effects with pipe
6. **Schema Validation**: Type-safe parsing

Google Antigravity's Gemini 3 understands Effect-TS patterns for robust applications.

When to Use This Prompt

This Effect-TS prompt is ideal for developers working on:

  • Effect-TS applications requiring modern best practices and optimal performance
  • Projects that need production-ready Effect-TS code with proper error handling
  • Teams looking to standardize their effect-ts development workflow
  • Developers wanting to learn industry-standard Effect-TS patterns and techniques

By using this prompt, you can save hours of manual coding and ensure best practices are followed from the start. It's particularly valuable for teams looking to maintain consistency across their effect-ts implementations.

How to Use

  1. Copy the prompt - Click the copy button above to copy the entire prompt to your clipboard
  2. Paste into your AI assistant - Use with Claude, ChatGPT, Cursor, or any AI coding tool
  3. Customize as needed - Adjust the prompt based on your specific requirements
  4. Review the output - Always review generated code for security and correctness
💡 Pro Tip: For best results, provide context about your project structure and any specific constraints or preferences you have.

Best Practices

  • ✓ Always review generated code for security vulnerabilities before deploying
  • ✓ Test the Effect-TS code in a development environment first
  • ✓ Customize the prompt output to match your project's coding standards
  • ✓ Keep your AI assistant's context window in mind for complex requirements
  • ✓ Version control your prompts alongside your code for reproducibility

Frequently Asked Questions

Can I use this Effect-TS prompt commercially?

Yes! All prompts on Antigravity AI Directory are free to use for both personal and commercial projects. No attribution required, though it's always appreciated.

Which AI assistants work best with this prompt?

This prompt works excellently with Claude, ChatGPT, Cursor, GitHub Copilot, and other modern AI coding assistants. For best results, use models with large context windows.

How do I customize this prompt for my specific needs?

You can modify the prompt by adding specific requirements, constraints, or preferences. For Effect-TS projects, consider mentioning your framework version, coding style, and any specific libraries you're using.

Related Prompts

💬 Comments

Loading comments...