Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver ToolsFeatured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver Tools

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
Prompts
Effect-TS Functional Patterns

Effect-TS Functional Patterns

Master Effect-TS functional programming patterns for Google Antigravity IDE type-safe applications

Effect-TSFunctional ProgrammingTypeScriptError Handling
by Antigravity AI
⭐0Stars
.antigravity
# Effect-TS Functional Patterns for Google Antigravity IDE

Build robust, type-safe applications with Effect-TS using Google Antigravity IDE. This comprehensive guide covers functional effects, error handling, dependency injection, and concurrent programming patterns that eliminate runtime exceptions.

## Core Effect Patterns

```typescript
// src/services/user-service.ts
import { Effect, Context, Layer, pipe, Schedule, Duration } from "effect";
import { Schema } from "@effect/schema";

// Define typed errors
class UserNotFoundError {
  readonly _tag = "UserNotFoundError";
  constructor(readonly userId: string) {}
}

class DatabaseError {
  readonly _tag = "DatabaseError";
  constructor(readonly cause: unknown) {}
}

class ValidationError {
  readonly _tag = "ValidationError";
  constructor(readonly message: string) {}
}

// Schema for validation
const UserSchema = Schema.Struct({
  id: Schema.String,
  email: Schema.String.pipe(Schema.pattern(/^[^@]+@[^@]+$/)),
  name: Schema.String.pipe(Schema.minLength(2)),
  role: Schema.Literal("admin", "user", "guest"),
});

type User = Schema.Schema.Type<typeof UserSchema>;

// Service interface using Context
class UserRepository extends Context.Tag("UserRepository")<
  UserRepository,
  {
    readonly findById: (id: string) => Effect.Effect<User, UserNotFoundError | DatabaseError>;
    readonly save: (user: User) => Effect.Effect<void, DatabaseError>;
    readonly delete: (id: string) => Effect.Effect<void, UserNotFoundError | DatabaseError>;
  }
>() {}

// Service implementation
const UserRepositoryLive = Layer.succeed(
  UserRepository,
  UserRepository.of({
    findById: (id) =>
      pipe(
        Effect.tryPromise({
          try: () => db.users.findUnique({ where: { id } }),
          catch: (e) => new DatabaseError(e),
        }),
        Effect.flatMap((user) =>
          user
            ? Effect.succeed(user)
            : Effect.fail(new UserNotFoundError(id))
        )
      ),

    save: (user) =>
      Effect.tryPromise({
        try: () => db.users.upsert({
          where: { id: user.id },
          create: user,
          update: user,
        }),
        catch: (e) => new DatabaseError(e),
      }).pipe(Effect.asVoid),

    delete: (id) =>
      pipe(
        Effect.tryPromise({
          try: () => db.users.delete({ where: { id } }),
          catch: (e) => new DatabaseError(e),
        }),
        Effect.catchTag("DatabaseError", (e) => {
          if (isNotFoundError(e.cause)) {
            return Effect.fail(new UserNotFoundError(id));
          }
          return Effect.fail(e);
        }),
        Effect.asVoid
      ),
  })
);
```

## Composing Effects

```typescript
// src/services/user-workflow.ts
import { Effect, pipe, Either, Option } from "effect";

class EmailService extends Context.Tag("EmailService")<
  EmailService,
  {
    readonly send: (to: string, subject: string, body: string) => Effect.Effect<void, Error>;
  }
>() {}

// Compose multiple services
const createUser = (
  input: unknown
): Effect.Effect<
  User,
  ValidationError | DatabaseError,
  UserRepository | EmailService
> =>
  pipe(
    // Validate input
    Schema.decodeUnknown(UserSchema)(input),
    Effect.mapError((e) => new ValidationError(e.message)),
    
    // Save to database
    Effect.flatMap((user) =>
      pipe(
        UserRepository,
        Effect.flatMap((repo) => repo.save(user)),
        Effect.map(() => user)
      )
    ),
    
    // Send welcome email (don't fail if email fails)
    Effect.tap((user) =>
      pipe(
        EmailService,
        Effect.flatMap((email) =>
          email.send(
            user.email,
            "Welcome!",
            `Hello ${user.name}, welcome to our platform!`
          )
        ),
        Effect.catchAll(() => Effect.void) // Ignore email errors
      )
    )
  );

// Retry with exponential backoff
const resilientFetch = <A>(
  effect: Effect.Effect<A, Error>
): Effect.Effect<A, Error> =>
  pipe(
    effect,
    Effect.retry(
      Schedule.exponential(Duration.millis(100)).pipe(
        Schedule.compose(Schedule.recurs(3)),
        Schedule.union(Schedule.spaced(Duration.seconds(1)))
      )
    )
  );
```

## Running Effects

```typescript
// src/main.ts
import { Effect, Layer, Runtime } from "effect";

// Compose all layers
const MainLayer = Layer.mergeAll(
  UserRepositoryLive,
  EmailServiceLive,
  LoggerLive
);

// Create runtime
const runtime = Runtime.make(MainLayer);

// Run the program
const program = pipe(
  createUser({ id: "1", email: "user@example.com", name: "John", role: "user" }),
  Effect.tap((user) => Effect.log(`Created user: ${user.name}`))
);

Effect.runPromise(program.pipe(Effect.provide(MainLayer)))
  .then(console.log)
  .catch(console.error);
```

## Best Practices for Google Antigravity IDE

When using Effect-TS with Google Antigravity, define all errors as tagged classes for exhaustive handling. Use Schema for runtime validation with static types. Leverage Layers for dependency injection and testing. Implement retry policies for resilient operations. Use pipe for readable composition. Let Gemini 3 generate Effect-TS patterns from imperative code.

Google Antigravity's agent mode excels at refactoring try-catch code into type-safe Effect pipelines.

When to Use This Prompt

This Effect-TS prompt is ideal for developers working on:

  • Effect-TS applications requiring modern best practices and optimal performance
  • Projects that need production-ready Effect-TS code with proper error handling
  • Teams looking to standardize their effect-ts development workflow
  • Developers wanting to learn industry-standard Effect-TS patterns and techniques

By using this prompt, you can save hours of manual coding and ensure best practices are followed from the start. It's particularly valuable for teams looking to maintain consistency across their effect-ts implementations.

How to Use

  1. Copy the prompt - Click the copy button above to copy the entire prompt to your clipboard
  2. Paste into your AI assistant - Use with Claude, ChatGPT, Cursor, or any AI coding tool
  3. Customize as needed - Adjust the prompt based on your specific requirements
  4. Review the output - Always review generated code for security and correctness
💡 Pro Tip: For best results, provide context about your project structure and any specific constraints or preferences you have.

Best Practices

  • ✓ Always review generated code for security vulnerabilities before deploying
  • ✓ Test the Effect-TS code in a development environment first
  • ✓ Customize the prompt output to match your project's coding standards
  • ✓ Keep your AI assistant's context window in mind for complex requirements
  • ✓ Version control your prompts alongside your code for reproducibility

Frequently Asked Questions

Can I use this Effect-TS prompt commercially?

Yes! All prompts on Antigravity AI Directory are free to use for both personal and commercial projects. No attribution required, though it's always appreciated.

Which AI assistants work best with this prompt?

This prompt works excellently with Claude, ChatGPT, Cursor, GitHub Copilot, and other modern AI coding assistants. For best results, use models with large context windows.

How do I customize this prompt for my specific needs?

You can modify the prompt by adding specific requirements, constraints, or preferences. For Effect-TS projects, consider mentioning your framework version, coding style, and any specific libraries you're using.

Related Prompts

💬 Comments

Loading comments...