Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver ToolsFeatured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver Tools

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
Prompts
AI Integration Patterns

AI Integration Patterns

Integrate AI models and LLMs into your applications

aillmopenaivercel-ai
by antigravity-team
⭐0Stars
.antigravity
# AI Integration Patterns for Google Antigravity

Integrate AI models and LLMs effectively into your applications with Google Antigravity IDE.

## Vercel AI SDK Setup

```typescript
// app/api/chat/route.ts
import { streamText, convertToCoreMessages } from "ai";
import { openai } from "@ai-sdk/openai";
import { anthropic } from "@ai-sdk/anthropic";

export const runtime = "edge";

export async function POST(req: Request) {
  const { messages, model = "gpt-4" } = await req.json();

  const provider = model.startsWith("claude") ? anthropic : openai;
  
  const result = await streamText({
    model: provider(model),
    messages: convertToCoreMessages(messages),
    system: `You are a helpful coding assistant. 
      Provide clear, concise answers with code examples when appropriate.
      Use markdown formatting for better readability.`,
    temperature: 0.7,
    maxTokens: 2000
  });

  return result.toDataStreamResponse();
}
```

## React Chat Component

```typescript
// components/Chat.tsx
"use client";

import { useChat } from "ai/react";
import { useRef, useEffect } from "react";

export function Chat() {
  const { messages, input, handleInputChange, handleSubmit, isLoading, error } = useChat({
    api: "/api/chat",
    onError: (error) => {
      console.error("Chat error:", error);
    }
  });

  const messagesEndRef = useRef<HTMLDivElement>(null);

  useEffect(() => {
    messagesEndRef.current?.scrollIntoView({ behavior: "smooth" });
  }, [messages]);

  return (
    <div className="flex flex-col h-[600px]">
      <div className="flex-1 overflow-y-auto p-4 space-y-4">
        {messages.map((message) => (
          <div
            key={message.id}
            className={`flex ${message.role === "user" ? "justify-end" : "justify-start"}`}
          >
            <div
              className={`max-w-[80%] rounded-lg p-4 ${
                message.role === "user"
                  ? "bg-blue-500 text-white"
                  : "bg-gray-100 text-gray-900"
              }`}
            >
              <div className="prose prose-sm">
                {message.content}
              </div>
            </div>
          </div>
        ))}
        {isLoading && (
          <div className="flex justify-start">
            <div className="bg-gray-100 rounded-lg p-4">
              <span className="animate-pulse">Thinking...</span>
            </div>
          </div>
        )}
        <div ref={messagesEndRef} />
      </div>

      {error && (
        <div className="p-2 bg-red-100 text-red-600 text-sm">
          Error: {error.message}
        </div>
      )}

      <form onSubmit={handleSubmit} className="p-4 border-t">
        <div className="flex gap-2">
          <input
            value={input}
            onChange={handleInputChange}
            placeholder="Ask a question..."
            className="flex-1 p-2 border rounded-lg"
            disabled={isLoading}
          />
          <button
            type="submit"
            disabled={isLoading || !input.trim()}
            className="px-4 py-2 bg-blue-500 text-white rounded-lg disabled:opacity-50"
          >
            Send
          </button>
        </div>
      </form>
    </div>
  );
}
```

## Structured Output Generation

```typescript
// lib/ai/structured.ts
import { generateObject } from "ai";
import { openai } from "@ai-sdk/openai";
import { z } from "zod";

const productSchema = z.object({
  name: z.string().describe("Product name"),
  description: z.string().describe("Product description"),
  price: z.number().positive().describe("Price in USD"),
  category: z.enum(["electronics", "clothing", "home", "sports"]),
  tags: z.array(z.string()).describe("Relevant tags for search"),
  specifications: z.record(z.string()).describe("Technical specifications")
});

export async function generateProductListing(prompt: string) {
  const { object } = await generateObject({
    model: openai("gpt-4-turbo"),
    schema: productSchema,
    prompt: `Generate a product listing based on: ${prompt}`
  });

  return object;
}

// Code generation
const codeSchema = z.object({
  language: z.string(),
  code: z.string(),
  explanation: z.string(),
  dependencies: z.array(z.string())
});

export async function generateCode(task: string, language: string) {
  const { object } = await generateObject({
    model: openai("gpt-4-turbo"),
    schema: codeSchema,
    prompt: `Generate ${language} code to: ${task}. 
      Include necessary imports and a brief explanation.`
  });

  return object;
}
```

## RAG Implementation

```typescript
// lib/ai/rag.ts
import { embed, embedMany } from "ai";
import { openai } from "@ai-sdk/openai";
import { Index } from "@upstash/vector";

const vectorIndex = new Index({
  url: process.env.UPSTASH_VECTOR_URL!,
  token: process.env.UPSTASH_VECTOR_TOKEN!
});

// Ingest documents
export async function ingestDocuments(documents: { id: string; content: string; metadata: Record<string, unknown> }[]) {
  const { embeddings } = await embedMany({
    model: openai.embedding("text-embedding-3-small"),
    values: documents.map(d => d.content)
  });

  const vectors = documents.map((doc, i) => ({
    id: doc.id,
    vector: embeddings[i],
    metadata: { ...doc.metadata, content: doc.content }
  }));

  await vectorIndex.upsert(vectors);
}

// Query with RAG
export async function queryWithContext(query: string, topK = 5) {
  const { embedding } = await embed({
    model: openai.embedding("text-embedding-3-small"),
    value: query
  });

  const results = await vectorIndex.query({
    vector: embedding,
    topK,
    includeMetadata: true
  });

  const context = results
    .map(r => r.metadata?.content)
    .filter(Boolean)
    .join("\n\n");

  return context;
}

// RAG-enhanced chat
export async function chatWithRAG(messages: Message[], query: string) {
  const context = await queryWithContext(query);

  const systemPrompt = `Use the following context to answer questions:

${context}

If the context does not contain relevant information, say so.`;

  return streamText({
    model: openai("gpt-4-turbo"),
    system: systemPrompt,
    messages
  });
}
```

## Best Practices

1. **Stream responses** for better UX
2. **Use structured outputs** for reliable parsing
3. **Implement RAG** for domain-specific knowledge
4. **Cache embeddings** to reduce costs
5. **Handle rate limits** with retries
6. **Monitor token usage** and costs
7. **Validate AI outputs** before using

Google Antigravity integrates seamlessly with AI models to enhance your development workflow.

When to Use This Prompt

This ai prompt is ideal for developers working on:

  • ai applications requiring modern best practices and optimal performance
  • Projects that need production-ready ai code with proper error handling
  • Teams looking to standardize their ai development workflow
  • Developers wanting to learn industry-standard ai patterns and techniques

By using this prompt, you can save hours of manual coding and ensure best practices are followed from the start. It's particularly valuable for teams looking to maintain consistency across their ai implementations.

How to Use

  1. Copy the prompt - Click the copy button above to copy the entire prompt to your clipboard
  2. Paste into your AI assistant - Use with Claude, ChatGPT, Cursor, or any AI coding tool
  3. Customize as needed - Adjust the prompt based on your specific requirements
  4. Review the output - Always review generated code for security and correctness
💡 Pro Tip: For best results, provide context about your project structure and any specific constraints or preferences you have.

Best Practices

  • ✓ Always review generated code for security vulnerabilities before deploying
  • ✓ Test the ai code in a development environment first
  • ✓ Customize the prompt output to match your project's coding standards
  • ✓ Keep your AI assistant's context window in mind for complex requirements
  • ✓ Version control your prompts alongside your code for reproducibility

Frequently Asked Questions

Can I use this ai prompt commercially?

Yes! All prompts on Antigravity AI Directory are free to use for both personal and commercial projects. No attribution required, though it's always appreciated.

Which AI assistants work best with this prompt?

This prompt works excellently with Claude, ChatGPT, Cursor, GitHub Copilot, and other modern AI coding assistants. For best results, use models with large context windows.

How do I customize this prompt for my specific needs?

You can modify the prompt by adding specific requirements, constraints, or preferences. For ai projects, consider mentioning your framework version, coding style, and any specific libraries you're using.

Related Prompts

💬 Comments

Loading comments...