Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver ToolsFeatured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver Tools

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
MCP Servers
Milvus MCP
🎯

Milvus MCP MCP Server

Open-source vector database for similarity search and AI.

milvusvectorembeddingssearch

About

## Milvus MCP Server: Vector Database for AI Applications The **Milvus MCP Server** integrates the open-source vector database Milvus into Google Antigravity. This high-performance database is designed for similarity search and AI applications, supporting billions of vectors with millisecond query latency. ### Why Milvus MCP? Milvus powers production AI applications: - **Massive Scale**: Billions of vectors with fast search - **Multiple Indexes**: IVF, HNSW, DiskANN, and more - **Hybrid Search**: Combine vector and scalar filtering - **Cloud Native**: Kubernetes-native architecture - **Antigravity Native**: AI-assisted vector operations ### Key Features #### 1. Vector Operations ```python from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType # Connect to Milvus connections.connect("default", host="localhost", port="19530") # Define collection schema fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=768), FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=1000) ] schema = CollectionSchema(fields, description="Document embeddings") collection = Collection("documents", schema) # Insert vectors collection.insert([ids, embeddings, texts]) ``` #### 2. Similarity Search ```python # Create index for fast search index_params = { "metric_type": "COSINE", "index_type": "HNSW", "params": {"M": 16, "efConstruction": 256} } collection.create_index("embedding", index_params) collection.load() # Search similar vectors results = collection.search( data=[query_embedding], anns_field="embedding", param={"metric_type": "COSINE", "params": {"ef": 64}}, limit=10, output_fields=["text"] ) ``` #### 3. Hybrid Filtering ```python # Combine vector search with filters results = collection.search( data=[query_embedding], anns_field="embedding", param={"ef": 64}, limit=10, expr="category == 'technology' and date > '2024-01-01'", output_fields=["text", "category", "date"] ) ``` ### Configuration ```json { "mcpServers": { "milvus": { "command": "npx", "args": ["-y", "@anthropic/mcp-milvus"], "env": { "MILVUS_HOST": "localhost", "MILVUS_PORT": "19530", "MILVUS_TOKEN": "your-token" } } } } ``` ### Use Cases **Semantic Search**: Build search systems that understand meaning, not just keywords. **Recommendation Systems**: Find similar items based on embedding similarity for personalized recommendations. **Image/Video Search**: Search media by content similarity using vision model embeddings. The Milvus MCP Server brings production-grade vector search to Antigravity applications.

Installation

Configuration
{
  "mcpServers": {
    "milvus": {}
  }
}

How to Use

    Related MCP Servers

    🧰

    Toolhouse MCP

    Universal AI tool platform that equips your AI with production-ready capabilities. Execute code, browse the web, manage files, send emails, and more through a unified MCP interface.

    🔨

    Smithery Registry MCP

    The MCP server registry and discovery platform. Browse, search, and install MCP servers from the community. Find the perfect integrations for your AI development workflow.

    🔍

    MCP Inspector

    Official debugging and testing tool for MCP servers. Inspect server capabilities, test tool calls, validate responses, and debug protocol communication in real-time.

    ← Back to All MCP Servers