Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver ToolsFeatured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver Tools

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
MCP Servers
LlamaIndex MCP
🦙

LlamaIndex MCP MCP Server

Data framework for LLM applications.

llamaindexragllmdata

About

## LlamaIndex MCP Server: Data Framework for LLM Applications The **LlamaIndex MCP Server** integrates the leading data framework for LLM applications into Google Antigravity. LlamaIndex excels at connecting LLMs to any data source, making it essential for building production RAG and agent applications. ### Why LlamaIndex MCP? LlamaIndex specializes in data-aware LLM applications: - **Data Connectors**: 100+ integrations for data sources - **Advanced Indexing**: Multiple index types for different use cases - **Query Engines**: Sophisticated retrieval strategies - **Agent Framework**: Build autonomous AI agents - **Antigravity Native**: AI-assisted data integration ### Key Features #### 1. Simple Document Indexing ```python from llama_index.core import VectorStoreIndex, SimpleDirectoryReader # Load documents from directory documents = SimpleDirectoryReader("./data").load_data() # Create searchable index index = VectorStoreIndex.from_documents(documents) # Query the index query_engine = index.as_query_engine() response = query_engine.query("What are the main topics?") print(response) ``` #### 2. Advanced Retrieval ```python from llama_index.core.retrievers import ( VectorIndexRetriever, KeywordTableSimpleRetriever ) from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.postprocessor import SimilarityPostprocessor # Hybrid retrieval with reranking retriever = VectorIndexRetriever(index, similarity_top_k=10) postprocessor = SimilarityPostprocessor(similarity_cutoff=0.7) query_engine = RetrieverQueryEngine( retriever=retriever, node_postprocessors=[postprocessor] ) ``` #### 3. Agent Building ```python from llama_index.agent.openai import OpenAIAgent from llama_index.core.tools import QueryEngineTool # Create tools from indices tools = [ QueryEngineTool.from_defaults( query_engine=docs_engine, name="documentation", description="Search product documentation" ), QueryEngineTool.from_defaults( query_engine=api_engine, name="api_reference", description="Search API reference" ) ] # Build agent with tools agent = OpenAIAgent.from_tools(tools, verbose=True) response = agent.chat("How do I authenticate API requests?") ``` ### Configuration ```json { "mcpServers": { "llamaindex": { "command": "npx", "args": ["-y", "@anthropic/mcp-llamaindex"], "env": { "OPENAI_API_KEY": "your-openai-key", "LLAMA_CLOUD_API_KEY": "your-llamacloud-key" } } } } ``` ### Use Cases **Knowledge Bases**: Build question-answering systems over private documents and databases. **Data Agents**: Create agents that can query multiple data sources to answer complex questions. **Semantic Search**: Implement advanced search over unstructured data with hybrid retrieval. The LlamaIndex MCP Server enables sophisticated data-aware LLM applications in Antigravity.

Installation

Configuration
{
  "mcpServers": {
    "llamaindex": {}
  }
}

How to Use

    Related MCP Servers

    🧰

    Toolhouse MCP

    Universal AI tool platform that equips your AI with production-ready capabilities. Execute code, browse the web, manage files, send emails, and more through a unified MCP interface.

    🔨

    Smithery Registry MCP

    The MCP server registry and discovery platform. Browse, search, and install MCP servers from the community. Find the perfect integrations for your AI development workflow.

    🔍

    MCP Inspector

    Official debugging and testing tool for MCP servers. Inspect server capabilities, test tool calls, validate responses, and debug protocol communication in real-time.

    ← Back to All MCP Servers