Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierVerified on Verified ToolsFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowFeatured on FazierVerified on Verified ToolsFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App Show

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
MCP Servers
LangChain MCP Adapters
link

LangChain MCP Adapters MCP Server

LangChain adapter for MCP tools

langchainagentsaiframework

About

## LangChain MCP Server: LLM Application Framework The **LangChain MCP Server** integrates the leading framework for building LLM-powered applications into Google Antigravity. LangChain provides the building blocks for chains, agents, and retrieval systems that form the foundation of modern AI applications. ### Why LangChain MCP? LangChain simplifies LLM application development: - **Composable**: Chain together components easily - **Model Agnostic**: Works with any LLM provider - **Rich Ecosystem**: 500+ integrations available - **Agent Framework**: Build autonomous AI agents - **Production Ready**: LangServe for deployment ### Key Features #### 1. Chain Composition ```python from langchain_openai import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser llm = ChatOpenAI(model="gpt-4-turbo") prompt = ChatPromptTemplate.from_template("Explain {topic} simply") parser = StrOutputParser() # Compose chain using pipe operator chain = prompt | llm | parser result = chain.invoke({"topic": "machine learning"}) print(result) ``` #### 2. RAG Pipeline ```python from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings from langchain.chains import RetrievalQA # Create vector store vectorstore = Chroma.from_documents(documents, OpenAIEmbeddings()) # Build RAG chain qa_chain = RetrievalQA.from_chain_type( llm=ChatOpenAI(), retriever=vectorstore.as_retriever(), return_source_documents=True ) result = qa_chain.invoke({"query": "What is our refund policy?"}) ``` #### 3. Agents ```python from langchain.agents import create_react_agent, AgentExecutor from langchain.tools import Tool tools = [ Tool(name="search", func=search_web, description="Search the web"), Tool(name="calculate", func=calculator, description="Do math") ] agent = create_react_agent(llm, tools, prompt) executor = AgentExecutor(agent=agent, tools=tools) result = executor.invoke({"input": "What is 25% of Tesla stock price?"}) ``` ### Configuration ```json { "mcpServers": { "langchain": { "command": "npx", "args": ["-y", "@anthropic/mcp-langchain"], "env": { "OPENAI_API_KEY": "your-key", "LANGCHAIN_TRACING_V2": "true" } } } } ``` ### Use Cases **Chatbots**: Build conversational AI with memory and context management. **RAG Systems**: Create question-answering systems over private data. **Autonomous Agents**: Build agents that can reason and use tools. The LangChain MCP Server brings LLM application building blocks to Antigravity.

Installation

Configuration
{
  "mcpServers": {
    "langchain": {
      "mcpServers": {
        "langchain": {
          "args": [
            "install",
            "langchain-mcp-adapters"
          ],
          "command": "pip"
        }
      }
    }
  }
}

How to Use

  1. 11. Install via pip install langchain-mcp-adapters
  2. 22. Convert MCP tools to LangChain tools
  3. 33. Connect to multiple MCP servers

Related MCP Servers

🧰

Toolhouse MCP

Universal AI tool platform that equips your AI with production-ready capabilities. Execute code, browse the web, manage files, send emails, and more through a unified MCP interface.

🔨

Smithery Registry MCP

The MCP server registry and discovery platform. Browse, search, and install MCP servers from the community. Find the perfect integrations for your AI development workflow.

🔍

MCP Inspector

Official debugging and testing tool for MCP servers. Inspect server capabilities, test tool calls, validate responses, and debug protocol communication in real-time.

← Back to All MCP Servers