Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierVerified on Verified ToolsFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowFeatured on FazierVerified on Verified ToolsFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App Show

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
MCP Servers
Kubernetes Python MCP Server
terminal

Kubernetes Python MCP Server MCP Server

Python MCP server for Kubernetes with kubectl and helm

kubernetesk8skubectlhelmpython

About

## Kubernetes Python MCP Server: K8s Management with Python The **Kubernetes Python MCP Server** provides native Python integration for Kubernetes into Google Antigravity, enabling developers to manage clusters, deployments, and resources with type-safe Python interfaces. ### Why Kubernetes Python MCP? - **Native Python** - Clean Python API for Kubernetes operations - **Full API coverage** - Access to all Kubernetes API resources - **Type safety** - Complete type hints for all operations - **Multi-cluster** - Manage multiple clusters from one interface - **Watch support** - Real-time resource monitoring with watches ### Key Features #### 1. Deployment Management ```python # Create deployment deployment = await mcp.call("k8s-python", "create_deployment", { "namespace": "default", "name": "web-app", "image": "nginx:latest", "replicas": 3, "ports": [{"container_port": 80}], "resources": { "requests": {"cpu": "100m", "memory": "128Mi"}, "limits": {"cpu": "500m", "memory": "512Mi"} } }) # Scale deployment await mcp.call("k8s-python", "scale_deployment", { "namespace": "default", "name": "web-app", "replicas": 5 }) ``` #### 2. Pod Operations ```python # List pods pods = await mcp.call("k8s-python", "list_pods", { "namespace": "default", "label_selector": "app=web-app" }) for pod in pods: print(f"{pod[\"name\"]}: {pod[\"status\"][\"phase\"]}") # Get pod logs logs = await mcp.call("k8s-python", "get_pod_logs", { "namespace": "default", "name": pods[0]["name"], "tail_lines": 100 }) ``` #### 3. Service Management ```python # Create service service = await mcp.call("k8s-python", "create_service", { "namespace": "default", "name": "web-app-svc", "selector": {"app": "web-app"}, "ports": [{"port": 80, "target_port": 80}], "type": "LoadBalancer" }) # Get service external IP svc = await mcp.call("k8s-python", "get_service", { "namespace": "default", "name": "web-app-svc" }) print(f"External IP: {svc[\"status\"][\"load_balancer\"][\"ingress\"][0][\"ip\"]}") ``` #### 4. ConfigMap and Secrets ```python # Create ConfigMap await mcp.call("k8s-python", "create_configmap", { "namespace": "default", "name": "app-config", "data": { "DATABASE_URL": "postgres://db:5432/app", "LOG_LEVEL": "info" } }) # Create Secret await mcp.call("k8s-python", "create_secret", { "namespace": "default", "name": "app-secrets", "data": { "API_KEY": "base64-encoded-key" } }) ``` ### Configuration ```json { "mcpServers": { "k8s-python": { "command": "python", "args": ["-m", "mcp_kubernetes"], "env": { "KUBECONFIG": "~/.kube/config", "K8S_CONTEXT": "production" } } } } ``` ### Use Cases **Deployment Automation**: Manage application deployments programmatically. **Resource Monitoring**: Watch and react to resource changes in real-time. **Configuration Management**: Manage ConfigMaps and Secrets centrally. **Multi-Cluster Operations**: Manage resources across multiple clusters. The Kubernetes Python MCP Server provides Pythonic cluster management.

Installation

Configuration
{
  "mcpServers": {
    "kubernetes-python": {
      "mcpServers": {
        "kubernetes-py": {
          "args": [
            "mcp-kubernetes-server"
          ],
          "command": "uvx"
        }
      }
    }
  }
}

How to Use

  1. 1Install kubectl and helm CLI tools
  2. 2Configure kubeconfig for cluster access
  3. 3Python >= 3.11 required

Related MCP Servers

🧰

Toolhouse MCP

Universal AI tool platform that equips your AI with production-ready capabilities. Execute code, browse the web, manage files, send emails, and more through a unified MCP interface.

🔨

Smithery Registry MCP

The MCP server registry and discovery platform. Browse, search, and install MCP servers from the community. Find the perfect integrations for your AI development workflow.

🔍

MCP Inspector

Official debugging and testing tool for MCP servers. Inspect server capabilities, test tool calls, validate responses, and debug protocol communication in real-time.

← Back to All MCP Servers