Google Antigravity Directory

The #1 directory for Google Antigravity prompts, rules, workflows & MCP servers. Optimized for Gemini 3 agentic development.

Resources

PromptsMCP ServersAntigravity RulesGEMINI.md GuideBest Practices

Company

Submit PromptAntigravityAI.directory

Popular Prompts

Next.js 14 App RouterReact TypeScriptTypeScript AdvancedFastAPI GuideDocker Best Practices

Legal

Privacy PolicyTerms of ServiceContact Us
Featured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver ToolsFeatured on FazierFeatured on WayfindioAntigravity AI - Featured on Startup FameFeatured on Wired BusinessFeatured on Twelve ToolsListed on Turbo0Featured on findly.toolsFeatured on Aura++That App ShowAI ToolzShinyLaunchMillion Dot HomepageSolver Tools

© 2026 Antigravity AI Directory. All rights reserved.

The #1 directory for Google Antigravity IDE

This website is not affiliated with, endorsed by, or associated with Google LLC. "Google" and "Gemini" are trademarks of Google LLC.

Antigravity AI Directory
PromptsMCPBest PracticesUse CasesLearn
Home
MCP Servers
Haystack MCP
🔍

Haystack MCP MCP Server

LLM orchestration framework by deepset.

haystacknlpragdeepset

About

## Haystack MCP Server: Production-Ready RAG Framework The **Haystack MCP Server** integrates Haystack's modular RAG framework into Google Antigravity. This enterprise-grade framework enables building custom retrieval-augmented generation pipelines with components for every step of the NLP workflow. ### Why Haystack MCP? Haystack provides production-grade RAG infrastructure: - **Modular Design**: Mix and match components - **Model Agnostic**: Works with any LLM provider - **Production Ready**: Battle-tested at enterprise scale - **Rich Ecosystem**: Integrations for every use case - **Antigravity Native**: AI-assisted pipeline building ### Key Features #### 1. RAG Pipeline Construction ```python from haystack import Pipeline from haystack.components.embedders import OpenAITextEmbedder from haystack.components.retrievers import InMemoryEmbeddingRetriever from haystack.components.generators import OpenAIGenerator from haystack.components.builders import PromptBuilder # Build a complete RAG pipeline rag = Pipeline() rag.add_component("embedder", OpenAITextEmbedder()) rag.add_component("retriever", InMemoryEmbeddingRetriever(document_store)) rag.add_component("prompt", PromptBuilder(template=template)) rag.add_component("generator", OpenAIGenerator()) rag.connect("embedder", "retriever") rag.connect("retriever", "prompt.documents") rag.connect("prompt", "generator") ``` #### 2. Document Processing ```python from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter from haystack.components.converters import PyPDFToDocument # Document ingestion pipeline indexing = Pipeline() indexing.add_component("converter", PyPDFToDocument()) indexing.add_component("cleaner", DocumentCleaner()) indexing.add_component("splitter", DocumentSplitter( split_by="sentence", split_length=3 )) indexing.add_component("embedder", OpenAIDocumentEmbedder()) indexing.add_component("writer", DocumentWriter(document_store)) ``` #### 3. Evaluation Components ```python from haystack.components.evaluators import SASEvaluator, ContextRelevanceEvaluator # Evaluate RAG quality evaluator = Pipeline() evaluator.add_component("sas", SASEvaluator()) evaluator.add_component("relevance", ContextRelevanceEvaluator()) results = evaluator.run({ "sas": {"predicted_answers": predictions, "ground_truth": truth}, "relevance": {"questions": questions, "contexts": contexts} }) ``` ### Configuration ```json { "mcpServers": { "haystack": { "command": "npx", "args": ["-y", "@anthropic/mcp-haystack"], "env": { "OPENAI_API_KEY": "your-openai-key", "HAYSTACK_TELEMETRY_ENABLED": "False" } } } } ``` ### Use Cases **Custom RAG Systems**: Build sophisticated question-answering systems over your private data. **Document Processing**: Create automated pipelines for ingesting and indexing large document collections. **Evaluation Frameworks**: Systematically evaluate and improve RAG system performance. The Haystack MCP Server enables building production-grade RAG systems within Antigravity.

Installation

Configuration
{
  "mcpServers": {
    "haystack": {}
  }
}

How to Use

    Related MCP Servers

    🧰

    Toolhouse MCP

    Universal AI tool platform that equips your AI with production-ready capabilities. Execute code, browse the web, manage files, send emails, and more through a unified MCP interface.

    🔨

    Smithery Registry MCP

    The MCP server registry and discovery platform. Browse, search, and install MCP servers from the community. Find the perfect integrations for your AI development workflow.

    🔍

    MCP Inspector

    Official debugging and testing tool for MCP servers. Inspect server capabilities, test tool calls, validate responses, and debug protocol communication in real-time.

    ← Back to All MCP Servers